The technology behind smarter diesel cars that will be designed and sold throughout the world by Ford is being researched at the University of Bath.

Using a new £1.6m grant from the Government's Science Research Investment Fund and £350,000 from Ford, the University of Bath's department of mechanical engineering is carrying out research into ways of significantly improving the fuel consumption of diesel engines and reducing harmful emissions.

These changes include making the temperature control and cooling mechanism of the engines more efficient and increasing the number of engine parts that are powered by electricity rather than mechanically.

The research will help to reduce the pollutants coming from diesel engines by half over the next seven years, continuing a long trend of reducing vehicle waste emissions. The research will help Ford's work with PSA Peugeot Citroen on improved diesel engines.

The cleaner, more efficient engines are behind the increase in diesel sales - it is estimated that by 2008 half of all new cars sold in Europe will use diesel.

Professor Gary Hawley, who heads the University of Bath's Powertrain and Vehicle Research Unit which is carrying out the research, says: "This isn't research that sits on a shelf gathering dust - our results will be in the cars people drive, cutting diesel bills and reducing waste products, within five or ten years."

Hawley also said that research at the University of Bath was looking farther ahead. He believed that in the next five years vehicle electrical systems would switch from using a 12-volt system to 36 volts.

This would mean that car engines would have the capability within their starter system to cut out when drivers stopped the car at junctions and traffic lights, and restart automatically when drivers put their foot on the accelerator.

This would virtually eliminate pollution from standing traffic, making the air in cities cleaner.

It would also allow car parts like water pumps and air conditioning to be completely driven by electricity, rather than mechanically, and allow for more elaborate car entertainment and communications systems. Catalyst converters would benefit from electrical heating which would allow them to work efficiently from the moment the engine was turned on and not after a few miles, as at present.